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Absfrucf: Enantioselective deprotonation of trans-4-t-butyldimethylsiloxymethyl-1,2- 
epoxycyclopentane (trans-4) by a chiral lithium amide, lithium (S)-2-(pyrrolidin-l- 
ylmethyl)pyrroliide (l), afforded (1S,4S)-trans-4-t-butyldimethylsiloxymethyl-2~yclo~n~n- l-01 
(trans-7) in 83 %ee. Alcohol rruns-7 was easily transformed to (-)-carbovir, an anti-HIV 
carbocyclic nucleoside. 

We have been studying an enantioselective deprotonation of meso-epoxides by the use of a chiral lithium 

amide, lithium (S)-2-(pyrrolidin-1-ylmethyl)pyrrolidide (l),l** and applied the reaction to the highly 

enantioselective synthesis of (1S,4R)-cis-4-r-butyl~methylsiloxy-2-cyclo~n~en-l-ol (cis-3a), (lS,4R)-cis-4- 

tetrahydropyranyloxy-2-cyclopenten-l-01 (cis-3b) and the corresponding trans isomers, useful synthetic 

intermediates for the synthesis of various cyclopentanoids. 2.3 In line with this work, we have started 
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investigating an enantioselective deprotonation of cis- and rruns-4-t-butyldimethylsiloxymethyl-1,2- 

epoxycyclopentane (4) and its synthetic application since the resulting alcohols seemed to be useful chiral 

synthetic intermediates. Recently an enantioselective transformation of cis-4-hydroxymethyl-1,2- 

epoxycyclopentane (cis-5) to chiral cis-4-hydroxymethyl-2-cyclopenten-l-01 by a chiral lithium amide was 

reported,4 which prompted us to report our own results obtained by the reaction of both cis- and mans-4 with 1 

in this communication.5 

Preparations of cis- and rruns-4 were summarized in Scheme 1. Epoxide cis-46 was obtained by t- 

butyldimethylsilylation (t-butyldimethylchlorosilane (TBDMSCI). imidazole, DMF, rt. overnight, 95%) of cis- 

epoxy alcohol 5, obtained by a similar method reported by others. 4 On the other hand, methyl truns-3,4- 

epoxycyclopentanecarboxylate (truns-6) was obtained predominantly by the epoxidation of methyl 3- 

cyclopentenecarboxylate with m-chloroperbenzoic acid (mCPBA) in cyclohexane (rt, 20 h, 91%, mans : cis = 

87 : 13) and separated from the stereoisomer cis-6 by silica gel column chromatography.7 Ester mm-6 was 
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cis-6 (12%) rrun~ -6 (79%) trunS -5 warts -4 

Scheme 1 

reduced to alcohol tram-5 (LiAlIQ, ether, -70 ‘C, 2 h, 76%) which was converted to trans-46 

quantitatively (TBDMSCI, imidazole, DMF, rt. overnight).8 

In the first place we examined the reaction of cis-4 by using 1 because cis-4+butyIdimethylsiloxy- 1,2- 

epoxycyclopentane (2a) was found to give higher selectivity than the corresponding trans isomer.*b Alcohol 

cis-7 was not obtained when the reaction was carried out in benzene, which was the best solvent in the 

transformation of 2 with 1, even under higher reaction temperature (refluxing benzene). Alcohol cis-76 was 

obtained in 28% yield using 1.5 equiv of 1 when the reaction was carried out in THF for 2 days in the presence 

of 1,8-diazabicyclo[4.3.0]undec-7-en (DBU) (1.5 equiv). The ee of alcohol cis-7 was 72% as determined after 

deriving to (S)-MTPA ester. It is interesting that cis-7 was obtained by the reaction of cis-4 and 1 although 

protected forms of cis-5 were unreactive to LDA or other chiral lithium amide.4 
- ., 

THF, 1.5 equiv DEW, ri,2 days 

cis-4 28%, 72qoee 

Because steric hindrance of the substituent of epoxide cis-4 was considered to be responsible for the low 

yield, we examined the reaction of tram-4 with 1, which was carried out by using 1.5 equiv of 1 in THF at 

room temperature for 2 days to yield rrans-76 in 26% yield (11% recovery of rruns-4) and 50% ee . The yield 

and selectivity were improved by using 1.8 equiv of 1 and 1.8 equiv of DBU as additive (74%, 83% ee). The 

ee of trans-7 was determined after deriving to (S)-MTPA ester. 
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The hydroxyl group of alcohol rrans-7 was then replaced by 2-amino-6-chloropurine using 

triphenylphosphine and diethyl azodicarboxylateg in 1,4-dioxane to yield (-)-carbovir precursor 86.10 (35%). 

(-)-Carbovir6 was obtained by desilylation of 8 with tetrabutylammounium fluoride in ‘D-IF (9,6 92%) 

followed by the treatment of 9 with aqueous sodium hydroxide (89%).11 (Scheme 2) 

TBDMSO PbP / EtO&-N=N-C02Et 
TBDMSO 

* 

1,4-dioxane, It, 1 h 
8 

traw -7 

aq. NaOH 

THF, tt, 0.5 h refl., 3.5 h 

9 
92% 

Scheme 2 

(-)-Carbovir 
89% 

In addition to our previous results, 2 it has become apparent that the enantioselectlve deprotonation of 

meso-cyclopentene oxide derivatives by chiral lithium amide 1 is a useful method for the preparation of chiral 

substituted 2-cyclopenten-l-01 derivatives. Other applications of this method for the synthesis of chiral natural 

compounds are now under way in this laboratory. 
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are as follows. 

cis-4: colorless oil. IR (neat) v: 2900, 1470, 1260, 1000, 950, 840, 780 cm-t. tH NMR (270 MHz, 

CDC13) 6: 0.01 (s, 6H), 0.86 (s, 9H), 1.65-1.90 (m, 4H). 2.10-2.30 (m, lH), 3.36 (d, 2H, J=7.9 Hz), 
3.43 (s, 2H). 

trans-414 : colorless oil. IR (neat) v: 2950, 1470, 1120, 1090, 1000, 840,780 cm-l. tH NMR (270 
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MHz, CDC13) 6: 0.01 (s, 6H), 0.86 (s, 9H), 1.45 (dd, 2H, J=8.9, 13.2 Hz), 1.84-2.10 (m, lH), 2.04 
(dd, 2H, J=7.2, 13.2 Hz), 3.44 (s, 2H), 3.52 (d, 2H, J=5.3 Hz). 

cis-7: colorless oil. [a]~~3 +33.2 (c 0.78, CHC13). IR (neat) v: 3400, 2950, 1480, 1280. 1090, 840, 

780 cm-l. lH NMR (270 MHz, CDC13) 6: 0.01 (s. 6H), 0.84 (s, 9H). 1.48 (d, 2H, Jt15.3 Hz), 2.10 
-2.35 (m, IH). 2.60-2.85 (m, lH), 3.40-3.70 (m, IH), 4.40-4.65 (m, lH), 5.65-5.75 (m. IH), 5.85- 
5.95 (m, 1H). 

nuns-7: colorless oil. [CZ]D25 -134.8 (c 2.02, CHC13) (for 83% ee). IR (neat) v: 3300, 2900, 1470, 

1250, 1100. 830, 770 cm-l. 1H NMR (270 MHz, CDC13) 6: 0.01 (s, 6H), 0.86 (s, 9H), 1.77 (ddd, 
lH, J=14.1, 7.8, 3.3 Hz), 1.91 (ddd. lH, J=14.1, 7.3. 4.6 Hz), 2.29 (br s, lH), 2.85-3.10 (m, lH), 
3.46 (ddd, 2H, J=24.3, 9.6, 6.5 Hz), 4.78-4.92 (m. lH), 5.85 (dt, lH, J=5.6, 2.0 Hz), 5.94 (dd. lH, 

J=5.6, 1.6 Hz). 13C NMR (67.94 MHz. CDC13) 6: 136.9, 134.2, 76.9, 66.7, 47.3, 36.8, 25.8, 18.2, 
-5.4. 

8: mp 124-127 “C. [a]D22 -77.0 (c 1.01, CHC13). IR (KBr) v: 3375, 3340, 3215,2960,2940, 2900, 

2870, 1650, 1610, 1565, 1475, 1125, 840, 785 cm- t. lH NMR (270 MHz, CDCI3) 6: 0.01 (s, 6H), 
0.84 (s, 9H), 1.63 (dt, lH, J=13.9, 6.3 Hz), 2.71 (dt, lH, J=13.9, 8.7 Hz), 2.85-3.05 (m, IH), 3.57 
(dd, lH, J=lO.l. 5.4 Hz), 3.67 (dd, lH, J=lO.l, 5.0 Hz), 5.35 (br s, 2H), 5.45-5.60 (m, lH), 5.78 

(dt, lH, J=5.6, 2.0 Hz), 6.12 (dt, lH, J=5.6, 2.0 Hz), 7.82 (s, 1H). l3C NMR (67.94 MHz, CDC13) 6: 
159.0, 153.4, 151.0, 140.8, 139.3, 129.1, 125.4, 65.4, 59.3, 47.8, 34.4, 25.9, 18.4, -5.4. 

9: mp 150-153 ‘C (lit.15 145-147 “C). [a]D23 -83.8 (c 0.41, CH30H) (lit.lte [o]D24 -75 (c 0.9, 

CH30H)). IR (KBr) v: 3450, 3330, 3215,3090, 1635, 1615, 1580, 1465, 1410, 1210, 1055.925.785 

cm-l. tH NMR (270 MHz, DMSO-de) 6: 1.64 (dt, lH, J=13.9, 5.4 Hz), 2.63 (dt, lH, J=13.9. 8.7 
Hz), 2.80-2.97 (m, 1H). 3.45 (t, 2H, J=5.4 Hz), 4.73 (t, lH, J=5.3 Hz), 5.35-5.55 (m, lH), 5.91 (dt. 
1H. J=5.6, 2.1 Hz), 6.15 (dt, lH, J=5.6, 2.0 Hz), 6.91 (br s, 2H), 8.04 (s, 1H). 

(-)-Carbovir: mp >235 “C (decomp.) (lit. * lb mp 278-283 ‘C (decomp)). [a]D21 -54.6 (c 0.22, CH3OH) 

(lit.ltb [o]D23 -67 (c 1.0, CH30H)). IR (KBr) v: 3320, 3220, 2950, 2880, 1690, 1630, 1600, 1535, 

1485, 1410, 1380, 1180, 1035,780 cm- l. tH NMR (270 MHz, DMSO-de) 6: 1.56 (dt, lH, J=14.0, 5.8 
Hz), 2.58 (dt, lH, J=13.4, 8.8 Hz), 2.78-2.95 (m, lH), 3.43 (t. 2H, J=5.5 Hz), 4.73 (t, lH, J=5.5 
Hz), 5.25-5.50 (m, lH), 5.80-5.95 (m. lH), 6.05-6.20 (m, lH), 6.44 (br s, 2H). 7.58 (s, lH), 10.54 
(br s, 1H). 
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